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The ratio R/ N is constant and is- known as Boltzmann
constant. Its numerical value is.] 38 x 107" erg K~ molecule™

48 MAXWELL-BOLTZMANN DISTRIBUTION
OF MOLECULAR SPEEDS

The gas molecules are moving in all possible directions, They
collide with one another and alzo with the walls of the container.
As a result of collisions, the speed and direction of the gas
molecules are ever changing, i.e., all the molecules in a given
sample of gus do not have the same speed.

The distnbubion of gas molecules among different possible
speeds was studied by Maxwell and Boltzmann vsing the theory
of probability, The results are mathematically expressed as,
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Here, N = Total number of molecules, M = nislar mass of gas
This expression gives the number of molecules {&Nn ) having
specd between woand (1 + du ) at temperature (T}
A plat of fraction of molecules in the speed range (u+ die),
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| Uy = most probable speed
v, = average speed

U = D00 mean square spead
Kinds of Molecular Speeds
Molecular speeds are of three types:

{1} The rms speed, /

_ {ii}. The average speed and /

{111} The most probable speed

(i) The root mean square speed: The speed in kinetic gas
equation, FF = %mnr:"‘, 15 the hypothetical speed possessed by

all the gas molecules when the total kinetic energy is equally- -
distributed amongst them The total kinetic energy of the =
molecules of the gas is sum of the kinetie energies of the
individual molecules.
Total kinetic energy
=Emc|1+%mc§ +—émc§+...+—;mf e i)

Let © be the 'l.-'i:ll::.»::it;.r possessed by each of the n molecules;
then,
tolal kinctic ecnergy = n x —; o’ e (11

Equating both the equations,
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Thus, mms speed is deflined as the square root of the mean of
the squares of the speed of all the molecules presant in the given
sample of the gas. The value of ¢ 18 determined by using the
following cxpressions:

l3py [T 3P |
Yo Vm V4
In 81 units, the values of R, PV, M and & used are given
belaw:
{iy R=83141K " mol'ar R =8.314 kPadm’ K™ mol ™!
(iiy ¥ of the gas always in litre
(iiiy Fof the gas in kilopascal (kPa). 1 atm = 101.3 kPs and
1 torr =0.133 kPa .
{ivi M in kg mal ™!
(v) dinkg m™ )
(i) Average speed: [Itis the arithmetic mean of the variouws
speeds of the molecules.

£=

&+ Foy bt

Average speed =

[t 15 equal to Jﬂ .
A

Itis related to rms speed by the following relationship:
’ Average speed = 0.9213 = rms speed
rms speed = 1085 » average speed

(iii) Most probable speed: This is defined as the speed
possessed by maximum number of molecules of a zas at a given
lemperature.

"

Mote: Root mean square spead mpiﬂ.fﬂ&d the non-existence of gases in the atmosphere of moon, Root mean square spesd of gases exceeds the
esvape velority of moon and hence gases escape from atmasphers of moon agamst the rraviintionsl barmer of moon,



Maxwell Distribution of Molecular Velocities

u:mlufmmﬁmﬂmmmmmvdmﬂmtaepmnm
Consider a gas molecule of mass m having a velocity component u. Then, the kinetic energy, &,
associated with this velocity component.is 1-mu?. The probability that this molecule has its velocity
component between & and u+du is given by p(u). In the 19th century, Boltzmann had shown that the
pmhd:ﬂnyfn:amn]uu]cmhﬂ:mmgsmmnmlhr’ﬂhhlmmmmn

F:“}“ et -.I!.f:.l:l" (: gm m“z} )
or pladu .-:r"'l'“"m - 22)

~ where 4 is the constant of proportionality. This constant can be evaluated by requiring that the total
probability must be unity. Thus,

[: plu)du .= .-'Ir: UL gy )

The range of integration of velocity component g is -eot0 + @ since velocity has both magnitude and
direction. The integral in Eq. me:unlrﬂdnid.ﬂﬂﬁmﬂﬂ'la, it is found from calculus that

Ee‘“’:du = (xfa)? = (_g;:_r_] ..4)

~ From Egs. 23 and 24, A(2nkT/m)'? = | so that A = (m/2xkT)1? .{25)
Sul:uunni:ng forﬂ in Eq 22, we have

{'ﬁ%) e-ﬂni.l'ltfd" . (26)

Eq. 26 is called the Maxwell distribution of nl:-lumh: velocities in one dimension. It is easy o
derive the Maxwell's distribution of molecular velocities in three dimensions hy multiplying the dlru:
one-dimension distributions with one another, Thus,

. A2T)

Plu,v,w) = p(u) p(v}) p(w)
- where v and w are the velocity components in the other two dimensions.
© pltv,widu dv dw = pludduXp(v)dv Xplw)dw ~

3/2 2wl i '
(1 ”.} Ir e:p{-%m]dudrdw . (28)

. ‘We are, however, interested in ani‘expression which gives the fraction of molecules with a velocity
berween ¢ and ¢ +dc (=u*+?+w?).reardless of the direction. These are molecules whose velocity
points lie. within a spherical shell of thickness dc at a distance ¢. This shell has the volume 4nclde,
whmhulheh:te_gru]ufdudrdwmﬁq 28 over the spherical shell. Hence, we find that

pOMe = dx{ B )’ ? & exp (- mArAT) de 29

This result was obtained by Maxwell in 1860 and is called the Maxwell diutr]bul:lunul’nﬂmlhr
velocities. It is customary to write p(c)dc as dNIN, where N s the total number of gas molecules.
The quantity dN/N (or p(c)dc) :hﬂlhz fraction of molecules with velocity bétween ¢ and c+dc. The



uﬂmﬂnmm-HFN;,‘whHeMmlh:nnllrmandNAuTheﬁmgamanm Accordingly,
Eq. 29 may also be written as

dN M V7 M)
d':——— 'E-J 1o p—— & % B s X ]
plejde = =5 4“(:::&?] “p[ znr]df | e

The Maxwell distribution of molecular
velocities is plotted in Fig. 1.

We see that the fraction of molecules
baving velocities greater than zero increases
with an increase in velocity, reaches a
maximum and then falls off towards zero
again a1 higher velocities.

The important features of the curves
are as follows :

=" _ 1. The fraction of molecules with too

’ low or to0 high velocities is very small.

2. There is a certain velocity for which

. the fraction of molecules is maximum. This |

is called the most probable velocity. —
The most probable velocity of 2 gas VRRY ===

is the velocity possessed by maximum Fig. l.mﬂuﬂ':w of molecular velocities.

mmmber of molecules of the gas at a given

temperature. It ‘corresponds to the peak of the curve. Its value, :tagmntemp:ﬂme dcpendt upon
ltm‘lmorlhep.:

~ Effect of Temperature on Distribution of Molecular Velocities. The most probable velocity
increases with rise in temperature, as shown in Fig. 1. The entire distribution curve, in fact, shifts
o the right with rise in temperature, as shown. The rise in temperature, therefore, increases. the
Mnrmmmﬁmmmm This can readily be understood from the
presence of the factor, exp(-mc*/2kT), in Eq. 29. The exponent has a negative sign and the temperature
T is in the denominator. The factor, thérefore, mmﬁﬂywﬂhmmﬂumlm
This factor is known as the Boltzmann factor. -

tl‘nﬁu knowing that 4-mc? is the kinetic energy of one molecule of the gas having velocity ¢,

* Most probable velocity

I3>T>T

FRACTION OF MOLECULES
Trr——
—d
wat

.

ep(-mAKT) = exp (- kD) . . ' )

where £ (=4 mc?)_gives the kinetic energy per molecule of the gas. The greater the temperature,
the greater is the value of £. Hence, there is rapid increase of the Boltzmann factor with increase in
temperature. This conclusion finds application in the theory of reaction rates also.

Maxwell Distribation of Molecular Kinetic Energies. With the help of Eq. 29 it is possible to
know how the kinetic energies of translation of molecules are distributed amongst the various molecules.
The fraction of molecules having kinetic energies in the range of £ and s+ds, viz., n&'-’,i'H can be
determined as follows :

e=dmd o & =Qem

2edc = (Um)de) o ode = delm (32)
Thus, L e = e% - [%)m[%) . %n .(3)



mumungumbovevameof&dcmsq 29, we have
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This is the Maxwell distribution of miolecular kinetic energies.

Example 2. Calculate the fraction of oxygen molecules at 1 atm aad 27°C whose kinetic cacrgies lie in the
range of (¢ - 0-005¢) and (¢ + 0-0058.

Solution : Mbumﬂsmﬁww“

2,

om0 @»

At 27°C, kinetic energy of the gas is given by

=32 (I-Bx10C I K) (00 K) = 62x108 )

de = (¢ + 00058 - (¢ - 00059 = 001c = 6:2AXW0ZJ
Substituting these values in Maxwell’s equation (35), we have

N, . 26:21x107' )" . 621x107) i ki
‘ﬁ‘ {1 a7Q- mno‘“:x")oooxn"‘ P T 38x10 21K x 300K it

_ 2x0-m8x 1070
77x0266xlo:5
- 464Tx107° ‘(
mnamnmofkmcmam
different temperatures is-sbown-in Fig. 2 ‘in which the
facxx(llN)(dN,ldc)uplomdagm:.Asmbe
m.themmbablehnwcmgymmm
increase in temperature as expected. The maximum in
dnpmbohlkyﬁmkncumpouhmmm;wwe
bullcmrgy
ltcmbceasilydwvnmthuchdpofﬁq 35 that

(i) the most probable kinetic energy is given by k772 | '
per molecule or RT/2 per mole of the gas and |~ KINETIC ENERGY.£ —»

e (-1-9)x621x102 )

(b))

(il)meavcngekmaicencrgypetmlenglmby Maxwell's distribution energies
(3/2)N\kT=(3/2)RT. This result is, evidently, in Fig- 2. m:,gﬂmmp:f:.? ’
agreement with that obtained from the kinetic theory

(Eq. 21).

' mamvammmammmmammmmmmum
study of gases. These are : (i) the most ‘gmbable velocity, c, (iz) lhe averagc velocity, <c¢> and
M)theroo(mm!qulthelocuy< >

The-onmbd:hvdodqisdeﬁmdnmewmypommdbymmmmnmnberofmdmhs
o(agsnagmnmpmm

The average velocity is given by me arithmetic mean of different velocities possessed by the
molecules of the gas at a given temperature. If ¢y, ¢, €3 ....... ¢, ard-the individual velocities of the
gumlecmumdninheinoulmnnber then, avengevelocityisgwenby

C|+O".‘C“+ ........ G \ o . o



If, however, ¢;, €2, €3 «vvvvenn. mmevehawwbymofu,.n;.n; ........ molecules
of the gas, respectively, then, average yelocity is given by . -
e N .37
ﬁ+h ’ﬁ+ oooooo
The root mean square velocity is defined as the square root of the mean of the squares of

different velocities possessed by molecules of a gas at a given temperature. Evidently, therootmun
square velocity would be given by

d+d+ds---dl”
N e|A-2 .
<> _ = | _ .38)
where ¢y, €2, €3 ... ¢, are the individual velocities of n molecules of the gas. Alternatively,
W
| Ml e tmefe L
<a>»n { A et ] : ; (39

where ¢y, €3, €3, oovnn are velocities possessed by groups of my, my, ny ...... molecules, respectively.

With the help of the Maxwell equation (Eq. 29), it is possible to denve mathematical expressions
for the three types of velocities, viz., the most probable velocity, ¢, ; the average velocity, <c>
and the root mean square velocity, <3>17, These expressions are s follows :

¢p = (UTIm)'? = QRTIM)'? k ..(40)
<> = (8kT/nm)? = (8RT/xM)\? «(41)
<A>W = (kTIm)'? = (ARTIM)'2 (42)

It is found that
<> ; <e>t ¢ =100 092: 082
Derivation of Expressions for'c,, <¢> and <¢?>'?

"1. Expression for ¢,. Differentiating Eq. 29 with respect 1o ¢ (using dN/N for p(c)dc) and setting
the result equal to zero. required for a maximum, we have

JL(!!N_) =(-—EL exp(-mc’l!k?‘)[ c+4nc’(-m§ .]-0 .. (43)

~ The factor (m/2nkT)*? is a constant, different from zeto. Also, the factor o (~mc3/2kT) is not
equal to zero. Hence, thc third factor, viz.,

8rc + 4ne® (~'melkl) =0 )
> ¢ =gy = (KTm)'? = M)\ ...(45)
2. Expression lom <c¢>. The average velocity is given by the expmsion

<e> = [epone .(46)

Substituting the value of p(c)dc from Eq. 29, we have :

32
m mc*
<¢> = 4”(-277) I:C’ W(--ﬁ]k ..(47)
Let mc kT = x* so that & = 2%Tx*/m ..{48)
Differentiating both sides, we have

dc = KT xdx/mc .{49)

Also from Eq. 48, ¢ = (%7x¥m)'? = (2kT/m)"? x : ..(50)
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Substituting the above value of ¢ in Eq. 49, we have
S S (}E)"’a
- meamx "),
FomEq. 50, & = (knm2,
Hence, the expression

réew[-%]dc -f(ﬁ)’é (_;k[)

«(31)

«.(52)

(53)

(U [eta-(2(Y) ([reta-d) o0

Thus, from Eqs. 47 and 54,
<e> = 4:( 2;1_)3”(%)2(%) = (&T7m)'? = (SRTIxM)'? .A55)
3. Expression for <¢?> 12, The root méan square velocity is defined as
| <@>in = {fc’p(c)dx}m ..(56)
~ From Eq. 29, the expression
| Jy ertene = "(z;r)mg c‘w(-%] 5 =
Let mANUT) = x* sothat * = (m)zx" -(58)
From Eq. 58, . c= (m)mx so that dc = (m)l e (59) '
From Eqs. 57, 58 and 59, it follows tha
ool (EE Pt m

From the tabls of definit itegrals, we know
that . .

L-I‘e"zdx = a/g)‘ln ---(6') '
From the above equations, we have 3
é

{f Cz P(C)dc}m- i >|f1 _ [‘%7‘. )I/z
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most probable velochy
avera

oot mean square veloelty

'l‘hcmoleculardimibutionotthcmmgypu
of velocities is shown in Fig. 3

VELOCITY ~
Fig. 3. Molecular distribution of the! three types of velocities.
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It 15 equal to J—-— .
Eq M
This is related o rms speed by the following relaticnship:

—
Most probable speed = LJI-E rms = (LE16 rms

or rms = |.224 most probable speed
The three kinds of molecular speeds are related to each other

as: . .
Most probable speed ; Average speed © rms speed

_ [T fsRT . [3RT

M Ymd N\ M
-3 243
n

=1:1.128:1.224

rms speed at any temperature © Cmay be related 1o its value at
STP as: .,
111?3 E ]

£ =gy 11'_27?3_ . wu {IJ-
3p .
“I? - it
From egs. (i) and (i}, we get
=:~— f3p [213+1)
““Va ¥V

(2734 1)
= —_—
273d

Some Essential Points for Distribution
‘of Molecular Speed _
(i} The fraction of molecules with very low or very high
- speeds is very small, Maximum fraction of molecules have speed
near to the most probable speed v

p =

u

Fig. 4.7 Distribution of molecular speeds of various
. ' gases at a constant temperature

(i) Total area under the curve is a measure of total number of
molecules in the collection. Thus, area under the curve remains
constant at different emperature.

Most Probable speed: This is defined as the speed possessed by maximum number of molecules of a
gas at given temperature.

(it} Dustribution of molecular speed also depends upon the
molecular mass of the gas. At sirnilar lemperature a heavier gas
molecule has & narrow distribution of speed than those of lighter
gas molecules. '

(iv} The fraction of molecules hdving speeds greater than
minimum goes on increasing with increase in speed. Tt reaches w
4 maxiniin value and xher} bepins 1o decreass.

(v) As long as temperature of the gas is constant, the fraction
having a particular speed remains the same inspite of the fact that
the molecules change their speeds due (o collisions.

The incregse n the temperature of the pas increases the
molecular speed. As a result, the most probable spesd increases
with the increase of temperature and the distribution curve shifts
towards right. The general shape of the curve remains the same
but the maxima of the curve becomes somewhat flat &t a higher
temperature, e, there 15 a wider distnbution of molecular speeds
and the fraction of the molecules having high speeds increascs.
However, the fraction of molecules possessing most probable
speeds decreases with increase in temperature,

Fracthin ———e

Example 36.  Calewlate the kinetic energy in joule of 8.00g
of methane at 27°C. .
5
Solation:  MNumber of gram moles of methane = -1% = ]i

T=(27+27)=300K
R=832JK" mol™

}(jnetic energy for one gram mole :% RT

=—§ w 8.32% 300
Thus,
kinetic energy f't.n'% gram maole = 7! = % = 8,322 300=1872)

Example 37.  Calculate the average and ‘tolal kimetic
engrgy of 0.3 mole of an ideal gas ar 0°C.



Solution: Average kinetic mergv per moLecu]e of the gas

_3R -
2N
3 8314%107

=3 6.023% 107 R

rs'as:xm"“crg sasmﬂ“i '
“Total kinetic energjrnfﬂﬁm]eut'l}mgas '
--ERT:(DS d

L...:.

_x3314xw’ x2?3xﬂ$

h}

__1?m>cm'“¢|g 1.702 KJ

- Example 38. Cu{mfa!e the pressure exerted 1:'}-' 101:
mm'ecuiﬂ.s' each of mass ]'l} £gin @ container of volume la’i.'m
the rins speed is 107 cms™ :

Solution: Using kinetic gai; equation,

2
1 mine

f
i F

Given, ¥ = Llitre = 1000 mL = 1000 em’: n =107 m= m'**

Cand o= 1{! ems".

Substimbing the xalu.tﬁ in the above equation,

11072 w105 w101

P=-x - =333x107 d o
3 1000 y_lle cm
Example 39. Caleulate the root mean sipuare speed of an
oxygen molpeule at 288 K in 81 wnits.
Solution: - am u{% |
R = 8.314kPa dm” K" mol™', T=288K
aiﬁi" S MEDORkgmol T T '

' .‘:ubs-tlnmng the values in uh-cwe equaum

. {3:‘( B.314 = 288 47179 ms'lj
0032

Example 40. Calcwlate the root mean square spead af

Fryd'ragen molecule ﬂrST’F )
! JPF"
i H =  J—
Solution: c IE
P =latm=101.3kPa
¥ =224 dm’

M=2gmol™ =0.002 kg mol™*
Substituting the values,

RS CLL LY PR R
0.002

Alternative method:
e= BT

M

R=8314kPadm’ K™ mol™';
M = 0.002 kg mal
Substituting the values, = ' '
RN EEEXITE

Y oo

T - 273K

Example 41, Oxygen ar 1 ammosphere and 0°C has a
dengity of 14290 g L' Fing the rms speed of axygen molecule.
Solution: P =lamm = 101.3% 10° Pa
d= 1.425i~i} gl = |.429trkg m
We know that, -
Iﬁ 13x1013x m’
= =461.15ms™
VTV e

Example 42. Ar  whar  temperamre - will  hedrogen
molecules have the same robt medn sipwave spéed oy n.rn-nzen )
molecules ar 27°C7

[3RT _ [3k % 300
‘Jﬂ"fH J”N

bl T_@xz 241K

Solution :

or

T —_
My My
Example 43, Cq.l'ﬂu.ftzt‘_e, the mm: ] .rguﬂm, avemg.e and
most probable speed of oxygen ar 27°C.
Solution: 27C =30 K

Root mean squar&speed— @

VM o

R <8314 107 erg K- mol”; M=32gmal’; T=300K

quhsulutlng the values, )

’ 3%3314:{11} x?:[lﬂ

Y TR

= 48356 cm/ sec

= 483,56 m/ sec

||3RT
Average speed = |——
g S Y

- Jsx 83143 107 % 300% 7

2% 32

= 44547 tmisec

445,42 mfsec

A% RwT
Vo
 [axs31ax107 %300
B ST

= 30483 cm/ sec

©= 30453 m/ sec

“Example 44, Calculate the average kinetic energy per
mele af OO gas at 27°C in different units,

1]

Meat pmbﬁh]e speed
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Solutlon: KE=

Nlu [ TE S ) [Py g W

w1k 1 9RT = 3= 894.151:;1_!

KE= > nRT
Ix33|4>€30{r
=3741J

=3.741x 10" erg

Example 45. 4 pas bulh of | live capacin comtains
20%10°" molecules of nitrogen:: everting a - pressure. of

T5T= 10" N o Cr.r.l'f.:rh.rre the root mean .hjlu:!r? speed cird

femperature rJ_f!Fre gay molecwles. If the ratio q;l"mmi prm'mb.l'e
- speed ta the root mean square speed is 0.82, calculare ‘the riost

prohable speed o,l"nﬁere molecules gt this temperature,

(1T 1993)

20x10"
————— mnl¢
G023 = 10
Given, ¥ = llitre =107 m’; P = 757% 10° N ™
R=%314JK" mol .

Solution:  Amount of the gas =

‘- ¥
Applying PV =nRT or T= a
nf
= 3
ro O xTITXIC _ a940K
2.0x 10"

w8314
§.023 % 10%

IRT _ [3xB314x2742
rms speed = J ——
R
Mot probable speed = (.8 x rms
=08 % 494 22 ms™!

= 395,376 ms

EUETRATIONS OF OBJECTIVE QUESTIONS —— — —

r

1. At what temperature is the oot mean square speed of M, gas

equal to that of propane gas at STP?
Ay 1737°C (b 1ITATE L o) 2T K
[Ans.  (b1]

Mint: 0, (Nph =, (CH )

|| IRT {JR 273
44

T=1737K]

17. At what temperature is the kinctic energy of a gas mol:cu]r:

half of its value at 327°C7
(@) 13.3°%C (1) 130°C
[Ams, (<))

Mint: KE = %Rr'

(L) 27°C  (d-123°C

=49422ms”

n_

)y =a0eC .

18,

19,

2ih.

Ty= WK
(=370
The root mean square speed of TI'JD[{?C!.III’.‘E of ]'III'I'D_BI:H s 15T
at a cerlam temperature, When the temperature 15 doubled,
the moleoules dissociate into ndividual atoms. The new nns |
speed.of the atom is:

fak2e - (bl 2 (o) S Ad) 4w
[Ans. (b))

[Hint: o= e

Tom 2T, My=M /2

. [3Rx2r

O T

The translational kinetic energy of an ideal gas r:lr.:p-c'nds only
omits

(&) pressure i) force

(&) temperature (d) molar mass

[Ams.  {c]]

[Hint: KE = ; RT - Kinetic energy depends on temperature. ]

2
At what temperature is the mms speed of H, molecules the
suime s that of oxygen molecules at 1327907 .

C@ITIK (b 10K (400K (d) 523K
[Ans. (b))
mr ART. !
[Hint: [I' | =
1|| oy ) -’H I\ My A
T, [(t600
2 Va2
7= 100K]

1fth|: temperatere of 1 mole of 8 pas is increased by S0°C,
caloulate the change in kinetic energy of!hi: aystern: -

SO DU 2006 )
(a) 62321, (b) 62351 (o) &235F (d).62350]
[Ans. (=} i i )

[Hint: R =% RT  (Kinetic energy of 1 n'u;d.e gaz) -
AE En{r & Al = --RT )
2 2z .
%Rv-:jﬂa—:a-:S!.MxiD
= &2,: 5511
At same temperature, :alcu[a‘u: the ratio of average velocity of
30, to CH,: [ DCE ZMHbG 3
fa) 2:3 (b} 3:4 icy 1:7 {400
lns. @
T8RT

Hint: v, = —

mwae



